Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Neuroinflammation ; 21(1): 34, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279130

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease characterized by motor deficits and cognitive decline. Many immune aspects of the disease are understood through studies in the experimental autoimmune encephalomyelitis (EAE) model, including the contribution of the NF-κB transcription factor to neuroinflammation. However, the cell-specific roles of NF-κB to EAE and its cognitive comorbidities still needs further investigation. We have previously shown that the myeloid cell NF-κB plays a role in the healthy brain by exerting homeostatic regulation of neuronal excitability and synaptic plasticity and here we investigated its role in EAE. METHODS: We used constitutive MφIKKßΚΟ mice, in which depletion of IKKß, the main activating kinase of NF-κB, was global to CNS and peripheral macrophages, and ΜgΙΚΚßKO mice, in which depletion was inducible and specific to CNS macrophages by 28 days after tamoxifen administration. We subjected these mice to MOG35-55 induced EAE and cuprizone-induced demyelination. We measured pathology by immunohistochemistry, investigated molecular mechanisms by RNA sequencing analysis and studied neuronal functions by in vivo electrophysiology in awake animals. RESULTS: Global depletion of IKKß from myeloid cells in MφIKKßΚΟ mice accelerated the onset and significantly supressed chronic EAE. Knocking out IKKß only from CNS resident macrophages accelerated the onset and exacerbated chronic EAE, accompanied by earlier demyelination and immune cell infiltration but had no effect in cuprizone-induced demyelination. Peripheral T cell effector functions were not affected by myeloid cell deletion of IKKß, but CNS resident mechanisms, such as microglial activation and neuronal hyperexcitability were altered from early in EAE. Lastly, depletion of myeloid cell IKKß resulted in enhanced late long-term potentiation in EAE. CONCLUSIONS: IKKß-mediated activation of NF-κΒ in myeloid cells has opposing roles in EAE depending on the cell type and the disease stage. In CNS macrophages it is protective while in peripheral macrophages it is disease-promoting and acts mainly during chronic disease. Although clinically protective, CNS myeloid cell IKKß deletion dysregulates neuronal excitability and synaptic plasticity in EAE. These effects of IKKß on brain cognitive abilities deserve special consideration when therapeutic interventions that inhibit NF-κB are used in MS.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Encefalomielite Autoimune Experimental/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Cuprizona , Macrófagos/metabolismo , Gravidade do Paciente , Camundongos Endogâmicos C57BL , Microglia/metabolismo
2.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894912

RESUMO

Gonadotropin-releasing hormone (GnRH) is pivotal in regulating human reproduction and fertility through its specific receptors. Among these, gonadotropin-releasing hormone receptor type I (GnRHR I), which is a member of the G-protein-coupled receptor family, is expressed on the surface of both healthy and malignant cells. Its presence in cancer cells has positioned this receptor as a primary target for the development of novel anti-cancer agents. Moreover, the extensive regulatory functions of GnRH have underscored decapeptide as a prominent vehicle for targeted drug delivery, which is accomplished through the design of appropriate conjugates. On this basis, a rationally designed series of anthraquinone/mitoxantrone-GnRH conjugates (con1-con8) has been synthesized herein. Their in vitro binding affinities range from 0.06 to 3.42 nM, with six of them (con2-con7) demonstrating higher affinities for GnRH than the established drug leuprolide (0.64 nM). Among the mitoxantrone based GnRH conjugates, con3 and con7 show the highest affinities at 0.07 and 0.06 nM, respectively, while the disulfide bond present in the conjugates is found to be readily reduced by the thioredoxin (Trx) system. These findings are promising for further pharmacological evaluation of the synthesized conjugates with the prospect of performing future clinical studies.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/síntese química , Antineoplásicos/imunologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Fatores Imunológicos , Terapia de Imunossupressão , Imunossupressores , Mitoxantrona , Neoplasias/tratamento farmacológico , Receptores LHRH/metabolismo
3.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511164

RESUMO

Single nucleotide polymorphisms (SNPs) in the vitamin D receptor (VDR) gene have been associated with chronic liver disease. We investigated the role of VDR SNPs on VDR protein levels and function in patients with chronic liver disease. VDR expression levels were determined in peripheral T lymphocytes (CD3+VDR+), monocytes (CD14+VDR+), and plasma from patients (n = 66) and healthy controls (n = 38). Genotyping of SNPs and the determination of expression of VDR/vitamin D-related genes were performed by using qPCR. The effect of FokI SNP on vitamin D-binding to VDR was investigated by molecular dynamics simulations. CD14+VDR+ cells were correlated with the MELD score. The ApaI SNP was associated with decreased CD3+VDR+ levels in cirrhotic patients and with higher liver stiffness in HCV patients. The BsmI and TaqI SNPs were associated with increased VDR plasma concentrations in cirrhotic patients and decreased CD14+VDR+ levels in HCV patients. The FokI SNP was associated with increased CD3+VDR+ levels in cirrhotic patients and controls. VDR polymorphisms were significantly related to the expression of genes critical for normal hepatocyte function and immune homeostasis. VDR expression levels were related to the clinical severity of liver disease. VDR SNPs may be related to the progression of chronic liver disease by affecting VDR expression levels.


Assuntos
Hepatite C Crônica , Cirrose Hepática , Humanos , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/genética , Hepatite C Crônica/genética , Hepatite C Crônica/patologia
4.
J Pept Sci ; 29(10): e3493, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37041122

RESUMO

Analogs of immunodominant myelin peptides involved in multiple sclerosis (MS: the most common autoimmune disease) have been extensively used to modify the immune response over the progression of the disease. The immunodominant 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG35-55 ) is an autoantigen appearing in MS and stimulates the encephalitogenic T cells, whereas mannan polysaccharide (Saccharomyces cerevisiae) is a carrier toward the mannose receptor of dendritic cells and macrophages. The conjugate of mannan-MOG35-55 has been extensively studied for the inhibition of chronic experimental autoimmune encephalomyelitis (EAE: an animal model of MS) by inducing antigen-specific immune tolerance against the clinical symptoms of EAE in mice. Moreover, it presents a promising approach for the immunotherapy of MS under clinical investigation. In this study, a competitive enzyme-linked immunosorbent assay (ELISA) was developed to detect the MOG35-55 peptide that is conjugated to mannan. Intra- and inter-day assay experiments proved that the proposed ELISA methodology is accurate and reliable and could be used in the following applications: (i) to identify the peptide (antigen) while it is conjugated to mannan and (ii) to adequately address the alterations that the MOG35-55 peptide may undergo when it is bound to mannan during production and stability studies.


Assuntos
Epitopos Imunodominantes , Esclerose Múltipla , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos , Animais , Camundongos , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/terapia , Ensaio de Imunoadsorção Enzimática , Epitopos Imunodominantes/análise , Mananas/química , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/análise , Fragmentos de Peptídeos/análise , Esclerose Múltipla/metabolismo , Esclerose Múltipla/terapia
5.
Antioxidants (Basel) ; 13(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275635

RESUMO

In silico approaches were employed to examine the characteristics of interactions between human mitochondrial thioredoxin 2 (HsTrx2) and its 38 previously identified mitochondrial protein ligands. All interactions appeared driven mainly by electrostatic forces. The statistically significant residues of HsTrx2 for interactions were characterized as "contact hot spots". Since these were identical/adjacent to putative thermodynamic hot spots, an energy network approach identified their neighbors to highlight possible contact interfaces. Three distinct areas for binding emerged: (i) one around the active site for covalent interactions, (ii) another antipodal to the active site for strong non-covalent interactions, and (iii) a third area involved in both kinds of interactions. The contact interfaces of HsTrx2 were projected as respective interfaces for Escherichia coli Trx1 (EcoTrx1), 2, and HsTrx1. Comparison of the interfaces and contact hot spots of HsTrx2 to the contact residues of EcoTx1 and HsTrx1 from existing crystal complexes with protein ligands supported the hypothesis, except for a part of the cleft/groove adjacent to Trp30 preceding the active site. The outcomes of this study raise the possibility for the rational design of selective inhibitors for the interactions of HsTrx2 with specific protein ligands without affecting the entirety of the functions of the Trx system.

6.
Front Immunol ; 13: 972003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159850

RESUMO

Autoimmune diseases affecting the CNS not only overcome immune privilege mechanisms that protect neural tissues but also peripheral immune tolerance mechanisms towards self. Together with antigen-specific T cells, myeloid cells are main effector cells in CNS autoimmune diseases such as multiple sclerosis, but the relative contributions of blood-derived monocytes and the tissue resident macrophages to pathology and repair is incompletely understood. Through the study of oxidized mannan-conjugated myelin oligodendrocyte glycoprotein 35-55 (OM-MOG), we show that peripheral maturation of Ly6ChiCCR2+ monocytes to Ly6ChiMHCII+PD-L1+ cells is sufficient to reverse spinal cord inflammation and demyelination in MOG-induced autoimmune encephalomyelitis. Soluble intradermal OM-MOG drains directly to the skin draining lymph node to be sequestered by subcapsular sinus macrophages, activates Ly6ChiCCR2+ monocytes to produce MHC class II and PD-L1, prevents immune cell trafficking to spinal cord, and reverses established lesions. We previously showed that protection by OM-peptides is antigen specific. Here, using a neutralizing anti-PD-L1 antibody in vivo and dendritic cell-specific Pdl1 knockout mice, we further demonstrate that PD-L1 in non-dendritic cells is essential for the therapeutic effects of OM-MOG. These results show that maturation of circulating Ly6ChiCCR2+ monocytes by OM-myelin peptides represents a novel mechanism of immune tolerance that reverses autoimmune encephalomyelitis.


Assuntos
Encefalomielite Autoimune Experimental , Encefalomielite , Animais , Antígenos Ly , Encefalomielite/patologia , Tolerância Imunológica , Mananas , Camundongos , Camundongos Knockout , Monócitos , Glicoproteína Mielina-Oligodendrócito , Peptídeos , Receptores CCR2
7.
Mol Pharm ; 19(11): 3795-3805, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36098508

RESUMO

Multiple sclerosis (MS) is one of the most common neurodegenerative diseases in young adults, with early clinical symptoms seen in the central nervous system (CNS) myelin sheaths due to an attack caused by the patient's immune system. Activation of the immune system is mediated by the induction of an antigen-specific immune response involving the interaction of multiple T-cell types with antigen-presenting cells (APCs), such as dendritic cells (DCs). Antigen-specific therapeutic approaches focus on immune cells and autoantigens involved in the onset of disease symptoms, which are the main components of myelin proteins. The ability of such therapeutics to bind strongly to DCs could lead to immune system tolerance to the disease. Many modern approaches are based on peptide-based research, as, in recent years, they have been of particular interest in the development of new pharmaceuticals. The characteristics of peptides, such as short lifespan in the body and rapid hydrolysis, can be overcome by their entrapment in nanospheres, providing better pharmacokinetics and bioavailability. The present study describes the development of polymeric nanoparticles with encapsulated myelin peptide analogues involved in the development of MS, along with their biological evaluation as inhibitors of MS development and progression. In particular, particles of poly(lactic-co-glycolic) acid (PLGA) loaded with peptides based on mouse/rat (rMOG) epitope 35-55 of myelin oligodendrocyte glycoprotein (MOG) conjugated with saccharide residues were developed. More specifically, the MOG35-55 peptide was conjugated with glucosamine to promote the interaction with mannose receptors (MRs) expressed by DCs. In addition, a study of slow release (dissolution) and quantification on both initially encapsulated peptide and daily release in saline in vitro was performed, followed by an evaluation of in vivo activity of the formulation on mouse experimental autoimmune encephalomyelitis (EAE), an animal model of MS, using both prophylactic and therapeutic protocols. Our results showed that the therapeutic protocol was effective in reducing EAE clinical scores and inflammation of the central nervous system and could be an alternative and promising approach against MS inducing tolerance against the disease.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Nanopartículas , Camundongos , Ratos , Animais , Glicoproteína Mielina-Oligodendrócito/química , Glicoproteína Mielina-Oligodendrócito/metabolismo , Epitopos , Camundongos Endogâmicos C57BL , Peptídeos/uso terapêutico , Fragmentos de Peptídeos
8.
J Biomol Struct Dyn ; 40(23): 12608-12620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34499023

RESUMO

Repurposing existing drugs, as well as natural and artificial sweeteners for novel therapeutic indications could speed up the drug discovery process since numerous associated risks and costs for drug development can be surpassed. In this study, natural and artificial sweeteners have been evaluated by in silico and experimental studies for their potency to inhibit lipoxygenase enzyme, an enzyme participating in the inflammation pathway. A variety of different methods pinpointed that aspartame inhibits the lipoxygenase isoform 1 (LOX-1). In particular, "LOX-aspartame" complex, that was predicted by docking studies, was further evaluated by Molecular Dynamics (MD) simulations in order to assess the stability of the complex. The binding energy of the complex has been calculated after MD simulations using Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method. Furthermore, Quantum Mechanics/Molecular Mechanics (QM/MM) calculations have been applied for geometry optimization of the "enzyme-ligand" complex. After having fully characterized the "LOX-aspartame" complex in silico, followed in vitro biological assays confirmed that aspartame inhibits LOX-1 (IC50=50 ± 3.0 µΜ) and blocks its biological response. The atomic details of aspartame's interaction profile with LOX-1 were revealed through Saturation Transfer Difference (STD) NMR (Nuclear Magnetic Resonance). Finally, aspartame was also tested with Molecular Docking and Molecular Dynamics studies for its potent binding to a number of different LOX isoforms of many organisms, including human. The in silico methods indicated that aspartame could serve as a novel starting point for drug design against LOX enzyme. Communicated by Ramaswamy H. Sarma.


Assuntos
Aspartame , Edulcorantes , Humanos , Simulação de Acoplamento Molecular , Aspartame/farmacologia , Simulação de Dinâmica Molecular , Anti-Inflamatórios/farmacologia , Lipoxigenases , Receptores Depuradores Classe E
9.
Front Immunol ; 11: 575451, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329540

RESUMO

CNS autoantigens conjugated to oxidized mannan (OM) induce antigen-specific T cell tolerance and protect mice against autoimmune encephalomyelitis (EAE). To investigate whether OM-peptides treat EAE initiated by human MHC class II molecules, we administered OM-conjugated murine myelin oligodendrocyte glycoprotein peptide 35-55 (OM-MOG) to humanized HLA-DR2b transgenic mice (DR2b.Ab°), which are susceptible to MOG-EAE. OM-MOG protected DR2b.Ab° mice against MOG-EAE by both prophylactic and therapeutic applications. OM-MOG reversed clinical symptoms, reduced spinal cord inflammation, demyelination, and neuronal damage in DR2b.Ab° mice, while preserving axons within lesions and inducing the expression of genes associated with myelin (Mbp) and neuron (Snap25) recovery in B6 mice. OM-MOG-induced tolerance was peptide-specific, not affecting PLP178-191-induced EAE or polyclonal T cell proliferation responses. OM-MOG-induced immune tolerance involved rapid induction of PD-L1- and IL-10-producing myeloid cells, increased expression of Chi3l3 (Ym1) in secondary lymphoid organs and characteristics of anergy in MOG-specific CD4+ T cells. The results show that OM-MOG treats MOG-EAE in a peptide-specific manner, across mouse/human MHC class II barriers, through induction of a peripheral type 2 myeloid cell response and T cell anergy, and suggest that OM-peptides might be useful for suppressing antigen-specific CD4+ T cell responses in the context of human autoimmune CNS demyelination.


Assuntos
Axônios/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Imunossupressores/farmacologia , Células Mieloides/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Adulto , Animais , Axônios/imunologia , Axônios/metabolismo , Axônios/patologia , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Regulação da Expressão Gênica , Grécia , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Humanos , Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Medula Espinal/imunologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto Jovem
10.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066323

RESUMO

Mannan (polysaccharide) conjugated with a myelin oligodendrocyte glycoprotein (MOG) peptide, namely (KG)5MOG35-55, represents a potent and promising new approach for the immunotherapy of Multiple Sclerosis (MS). The MOG35-55 epitope conjugated with the oxidized form of mannan (poly-mannose) via a (KG)5 linker was found to inhibit the symptoms of MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) in mice using prophylactic and therapeutic vaccinated protocols. Deamidation is a common modification in peptide and protein sequences, especially for Gln and Asn residues. In this study, the structural solution motif of deaminated peptides and their functional effects in an animal model for MS were explored. Several peptides based on the MOG35-55 epitope have been synthesized in which the Asn53 was replaced with Ala, Asp, or isoAsp. Our results demonstrate that the synthesized MOG peptides were formed to the deaminated products in basic conditions, and the Asn53 was mainly modified to Asp. Moreover, both peptides (wild type and deaminated derivative) conjugated with mannan (from Saccharomyces cerevisiae) independently inhibited the development of neurological symptoms and inflammatory demyelinating spinal cord lesions in MOG35-55-induced EAE. To conclude, mannan conjugated with a deamidated product did not affect the efficacy of the parent peptide.


Assuntos
Encefalomielite Autoimune Experimental/terapia , Imunoterapia/métodos , Glicoproteína Mielina-Oligodendrócito/imunologia , Animais , Asparagina/química , Desaminação , Feminino , Mananas/química , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/química , Glicoproteína Mielina-Oligodendrócito/uso terapêutico , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/uso terapêutico , Ratos
11.
Angiogenesis ; 23(4): 621-636, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32681389

RESUMO

Pleiotrophin (PTN) has a moderate stimulatory effect on endothelial cell migration through ανß3 integrin, while it decreases the stimulatory effect of vascular endothelial growth factor A (VEGFA) and inhibits cell migration in the absence of ανß3 through unknown mechanism(s). In the present work, by using a multitude of experimental approaches, we show that PTN binds to VEGF receptor type 2 (VEGFR2) with a KD of 11.6 nM. Molecular dynamics approach suggests that PTN binds to the same VEGFR2 region with VEGFA through its N-terminal domain. PTN inhibits phosphorylation of VEGFR2 at Tyr1175 and still stimulates endothelial cell migration in the presence of a selective VEGFR2 tyrosine kinase inhibitor. VEGFR2 downregulation by siRNA or an anti-VEGFR2 antibody that binds to the ligand-binding VEGFR2 domain also induce endothelial cell migration, which is abolished by a function-blocking antibody against ανß3 or the peptide PTN112-136 that binds ανß3 and inhibits PTN binding. In cells that do not express ανß3, PTN decreases both VEGFR2 Tyr1175 phosphorylation and cell migration in a VEGFR2-dependent manner. Collectively, our data identify VEGFR2 as a novel PTN receptor involved in the regulation of cell migration by PTN and contribute to the elucidation of the mechanism of activation of endothelial cell migration through the interplay between VEGFR2 and ανß3.


Assuntos
Proteínas de Transporte/metabolismo , Movimento Celular , Citocinas/metabolismo , Integrina alfaVbeta3/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proteínas de Transporte/química , Linhagem Celular Tumoral , Citocinas/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Modelos Biológicos , Simulação de Dinâmica Molecular , Neovascularização Fisiológica , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Domínios Proteicos , Ratos , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
J Chem Inf Model ; 60(3): 1461-1468, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31944109

RESUMO

Melanocortin receptor 4 (MC4R) is expressed predominantly in the central nervous system and regulates food intake and sexual function and is also thought to be responsible for effects on mood and cognition. It belongs to the melanocortin receptor subfamily of G protein-coupled receptors (GPCRs). Here, we have synthesized and structurally characterized three peptides that bind to MC4R, producing different signaling events. AgRP is a naturally occurring antagonist, HLWNRS is the minimal sequence of the N-terminal with partial agonist activity, and aMSH is a full agonistic peptide. By implementing molecular dynamics simulations on the different peptide-receptor complexes, we propose their molecular basis of binding to investigate their differential molecular properties regarding the activation states of the receptor. Our analysis shows that the agonist and partial agonist may induce rotation in transmembrane helix 3, which is known to be involved in the key events occurring during GPCR activation, and this movement is impacted by certain aromatic residues and their positioning in the orthosteric binding site of the receptor.


Assuntos
Peptídeos , Receptor Tipo 4 de Melanocortina , Sequência de Aminoácidos , AMP Cíclico , Simulação de Dinâmica Molecular
13.
Curr Med Chem ; 27(36): 6136-6158, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31309882

RESUMO

BACKGROUND: Gonadotropin-Releasing Hormone (GnRH) is a key element in sexual maturation and regulation of the reproductive cycle in the human organism. GnRH interacts with the pituitary cells through the activation of the Gonadotropin Releasing Hormone Receptors (GnRHR). Any impairments/dysfunctions of the GnRH-GnRHR complex lead to the development of various cancer types and disorders. Furthermore, the identification of GnRHR as a potential drug target has led to the development of agonist and antagonist molecules implemented in various treatment protocols. The development of these drugs was based on the information derived from the functional studies of GnRH and GnRHR. OBJECTIVE: This review aims at shedding light on the versatile function of GnRH and GnRH receptor and offers an apprehensive summary regarding the development of different agonists, antagonists and non-peptide GnRH analogues. CONCLUSION: The information derived from these studies can enhance our understanding of the GnRH-GnRHR versatile nature and offer valuable insight into the design of new more potent molecules.


Assuntos
Desenvolvimento de Medicamentos , Hormônio Liberador de Gonadotropina , Humanos , Receptores LHRH , Reprodução
14.
Biochim Biophys Acta Biomembr ; 1862(3): 183156, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846647

RESUMO

We have investigated the perturbation of influenza A M2TM in DMPC bilayers. We have shown that (a) DSC and SAXS detect changes in membrane organization caused by small changes (micromolar) in M2TM or aminoadamantane concentration and aminoadamantane structure, by comparison of amantadine and spiro[pyrrolidine-2,2'-adamantane] (AK13), (b) that WAXS and MD can suggest details of ligand topology. DSC and SAXS show that at a low M2TM micromolar concentration in DPMC bilayers, two lipid domains are observed, which likely correspond to M2TM boundary lipids and bulk-like lipids. At higher M2TM concentrations, one domain only is identified, which constitutes essentially all of the lipid molecules behaving as boundary lipids. According to SAXS, WAXS, and DSC in the absence of M2TM, both aminoadamantane drugs exert a similar perturbing effect on the bilayer at low concentrations. At the same concentrations of the drug when M2TM is present, amantadine and, to a lesser extent, AK13 cause, according to WAXS, a significant disordering of chain-stacking, which also leads to the formation of two lipid domains. This effect is likely due, according to MD simulations, to the preference of the more lipophilic AK13 to locate closer to the lateral surfaces of M2TM when compared to amantadine, which forms stronger ionic interactions with phosphate groups. The preference of AK13 to concentrate inside the lipid bilayer close to the exterior of the hydrophobic M2TM helices may contribute to its higher binding affinity compared to amantadine.


Assuntos
Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Proteínas da Matriz Viral/metabolismo , Amantadina/química , Amantadina/farmacologia , Antivirais/farmacologia , Sítios de Ligação , Humanos , Vírus da Influenza A/metabolismo , Influenza Humana/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Domínios Proteicos , Espalhamento a Baixo Ângulo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/fisiologia , Difração de Raios X
15.
J Mol Graph Model ; 89: 147-155, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30889428

RESUMO

Sexual maturation of human cells in ovaries and prostate is linked to the biochemical cascade initiated by the activation of cell receptors through the binding of Gonadotropin Releasing Hormone (GnRH). The GnRH receptors (GnRHR) are part of the rhodopsin G-protein coupled receptor (GPCR) family and consist of seven trans-membrane helical domains connected via extra- and intra-cellular segments. The GnRH-GnRHR complex has been implicated in various forms of prostate and ovarian cancer. The lack of any structural data about the GnRH receptor impedes the design of antagonists for use in cancer treatment. The aim of the study is to devise a model of GnRHR to be used further for the design of improved peptide/non-peptide GnRH analogues and, to our knowledge provide new structural information regarding the extracellular loop 2 (ECL2) that acts a regulator of ligand entry to GnRHR. The common structural characteristics, of the members of the rhodopsin family of GPCRs, have been employed for the construction of a homology model for GnRHR. Structural information from the human ß2-adrenergic receptor, as well as rhodopsins have been used in order to create a theoretical model for GnRHR. Furthermore, molecular dynamics (MD) simulations have been employed for the refinement of the model and to explore the impact of the bilayer membrane in GnRHR conformation.


Assuntos
Simulação de Dinâmica Molecular , Conformação Proteica , Receptores LHRH/química , Sequência de Aminoácidos , Hormônio Liberador de Gonadotropina/química , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Receptores Acoplados a Proteínas G/química , Receptores LHRH/metabolismo
16.
Methods Mol Biol ; 1824: 33-47, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30039400

RESUMO

Advances in theoretical chemistry have led to the development of various robust computational techniques employed in drug design. Pharmacophore modeling, molecular docking, and molecular dynamics (MD) simulations have been extensively applied, separately or in combination, in the design of potent molecules. The techniques involve the identification of a potential drug target (e.g., protein) and its subsequent characterization. The next step in the process comprises the development of a map describing the interaction patterns between the target molecule and its natural substrate. Once these key features are identified, it is possible to explore the map and screen large databases of molecules to identify potential drug candidates for further refinement.Multiple sclerosis (MS) is an autoimmune disease where the immune system attacks the myelin sheath of nerve cells. The process involves the activation of encephalitogenic T cells via the formation of the trimolecular complex between the human leukocyte antigen (HLA), an immunodominant epitope of myelin proteins, and the T-cell receptor (TCR). Herein, the process for rational design and development of altered peptide ligands (APLs) and non-peptide mimetics against MS is described through the utilization of computational methods.


Assuntos
Materiais Biomiméticos/química , Desenho de Fármacos , Imunoterapia , Simulação de Dinâmica Molecular , Esclerose Múltipla/terapia , Materiais Biomiméticos/uso terapêutico , Humanos
17.
Molecules ; 23(2)2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29385090

RESUMO

In this report, amide-linked cyclic peptide analogues of the 87-99 myelin basic protein (MBP) epitope, a candidate autoantigen in multiple sclerosis (MS), are tested for therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE). Cyclic altered peptide analogues of MBP87-99 with substitutions at positions 91 and/or 96 were tested for protective effects when administered using prophylactic or early therapeutic protocols in MBP72-85-induced EAE in Lewis rats. The Lys91 and Pro96 of MBP87-99 are crucial T-cell receptor (TCR) anchors and participate in the formation of trimolecular complex between the TCR-antigen (peptide)-MHC (major histocompability complex) for the stimulation of encephalitogenic T cells that are necessary for EAE induction and are implicated in MS. The cyclic peptides were synthesized using Solid Phase Peptide Synthesis (SPPS) applied on the 9-fluorenylmethyloxycarboxyl/tert-butyl Fmoc/tBu methodology and combined with the 2-chlorotrityl chloride resin (CLTR-Cl). Cyclo(91-99)[Ala96]MBP87-99, cyclo(87-99)[Ala91,96]MBP87-99 and cyclo(87-99)[Arg91, Ala96]MBP87-99, but not wild-type linear MBP87-99, strongly inhibited MBP72-85-induced EAE in Lewis rats when administered using prophylactic and early therapeutic vaccination protocols. In particular, cyclo(87-99)[Arg91, Ala96]MBP87-99 was highly effective in preventing the onset and development of clinical symptoms and spinal cord pathology and providing lasting protection against EAE induction.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Proteína Básica da Mielina , Fragmentos de Peptídeos , Peptídeos Cíclicos , Animais , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Proteína Básica da Mielina/síntese química , Proteína Básica da Mielina/química , Proteína Básica da Mielina/farmacologia , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Ratos , Ratos Endogâmicos Lew
18.
Eur J Med Chem ; 143: 621-631, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216561

RESUMO

Anthraquinone type compounds, especially di-substituted amino alkylamino anthraquinones have been widely studied as immunosuppressants. The anthraquinone ring is part of mitoxandrone that has been used for the treatment of multiple sclerosis (MS) and several types of tumors. A desired approach for the treatment of MS would be the immunosuppression and elimination of specific T cells that are responsible for the induction of the disease. Herein, the development of a peptide compound bearing an anthraquinone derivative with the potential to specifically destroy the encephalitogenic T cells responsible for the onset of MS is described. The compound consists of the myelin basic protein (MBP) 85-99 immunodominant epitope (MBP85-99) coupled to an anthraquinone type molecule (AQ) via a disulfide (S-S) and 6 amino hexanoic acid (Ahx) residues (AQ-S-S-(Ahx)6MBP85-99). AQ-S-S-(Ahx)6MBP85-99 could bind to HLA II DRB1*-1501 antigen with reasonable affinity (IC50 of 56 nM) The compound was localized to the nucleus of Jurkat cells (an immortalized line of human T lymphocytes) 10 min after its addition to the medium and resulted in lowered Bcl-2 levels (apoptosis). Entrance of the compound was abolished when cells were pre-treated with cisplatin, an inhibitor of thioredoxin reductase. Accordingly, levels of free thiols were elevated in the culture supernatants of Jurkat cells exposed to N-succinimidyl 3-(2-pyridyldithio) propionate coupled to (Ahx)6MBP85-99 via a disulphide (SPDP-S-S-(Ahx)6MBP85-99) but returned to normal after exposure to cisplatin. These results raise the possibility of AQ-S-S-(Ahx)6MBP85-99 being used as an eliminator of encephalitogenic T cells via implication of the thioredoxin system for the generation of the toxic, thiol-containing moiety (AQ-SH). Future experiments would ideally determine whether SPDP-S-S-(Ahx)6MBP85-99 could incorporate into HLA II DRB1*-1501 tetramers and neutralize encephalitogenic T cell lines sensitized to MBP85-99.


Assuntos
Antraquinonas/farmacologia , Desenho de Fármacos , Epitopos/farmacologia , Terapia de Imunossupressão , Proteína Básica da Mielina/farmacologia , Fragmentos de Peptídeos/farmacologia , Linfócitos T/efeitos dos fármacos , Antraquinonas/síntese química , Antraquinonas/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Epitopos/química , Células HEK293 , Humanos , Células Jurkat , Estrutura Molecular , Proteína Básica da Mielina/química , Fragmentos de Peptídeos/química , Relação Estrutura-Atividade
19.
Med Chem ; 14(2): 120-128, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28875859

RESUMO

BACKGROUND: Myelin oligodendrocyte glycoprotein (MOG) is located on the external surface of myelin, a membranous component of the central nervous system (CNS) that forms the insulating lipid layer around neurons. The major MOG splicing variant (a1 transcript) encodes a transmembrane protein with an extracellular domain of an Ig variable (IgV) fold. MOG IgV domains from the same or different cells dimerize and contribute to the organization and maintenance of the myelin sheath in neurons. The encepalitogenic T cells recognize MOG and its immunodominant epitopes (epitopes 1-22, 35-55 and 92-106 located at the dimer interface) as foreign antigens and cause the destruction of myelin (demyelination) leading to the clinical condition known as multiple sclerosis (MS). Recognition of the antigen takes place in the context of the trimolecular complex formed by HLA, MOGpeptides and TCR. OBJECTIVE: Understanding the role of MOG in MS. METHOD/RESULTS: We have reviewed herein, the genomic organization of the human MOG gene, the structural characteristics of the MOG protein, the involvement of MOG in MS and clinical studies for the treatment of MS based on MOG peptide analogues. CONCLUSION: Conjugates of antigenic MOG peptides to mannan and combinations of antigenic MOG and other peptides chemically linked to cells of the immune system may modify the immune response, alleviating in some cases the symptoms of MS.


Assuntos
Esclerose Múltipla/metabolismo , Glicoproteína Mielina-Oligodendrócito/metabolismo , Animais , Humanos , Glicoproteína Mielina-Oligodendrócito/química
20.
Anal Biochem ; 538: 71-73, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28958915

RESUMO

The recovery of high molecular weight peptides from complex biological samples is a challenging task. Herein, a reliable, cost effective and rapid methodology was developed for the recovery and quantification of a myelin oligodendrocyte glycoprotein epitope namely (LysGly)5MOG35-55, from rat plasma. Removal of plasma proteins before quantification of the peptide was achieved after precipitation by an acetonitrile/water/formic acid solution. Using the developed protocol, average recoveries of the peptide from plasma ranged between 83.3 and 90.3%.


Assuntos
Análise Química do Sangue/métodos , Epitopos/sangue , Glicoproteína Mielina-Oligodendrócito/sangue , Glicoproteína Mielina-Oligodendrócito/isolamento & purificação , Peptídeos/sangue , Peptídeos/isolamento & purificação , Animais , Precipitação Química , Cromatografia Líquida de Alta Pressão , Epitopos/isolamento & purificação , Glicoproteína Mielina-Oligodendrócito/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...